C=|z-1|

#13 || Problem#1 || Cauchyโ€™s theorem || โˆซ(๐’›^๐Ÿโˆ’๐’›+๐Ÿ)/(๐’›โˆ’๐Ÿ) ๐’…๐’› || c: |๐’›|=๐Ÿ || c:|๐’›|=๐Ÿ/๐Ÿ|| 18MAT41 ||

Evaluate the Closed Line Integral , where C is the Circle |z|= 2 & |z| = 1/2 CAUCHY INTEGRAL FORMULA

ะŸัƒั‚ะธะฝ ะฟะพะทะดั€ะฐะฒะธะป ั ะะพะฒั‹ะผ ะณะพะดะพะผ | 2025

@btechmathshub7050Complex Integration -Problem based on cauchy's Integral Formula

If a^(x-1) = bc, b^(y-1) = ac and c^(z-1) = ab then xy + yz + zx - xyz= ?

@btechmathshub7050Complex Integration-Problems related to Cauchy's Integral formula

Evaluate the integral (z bar)^2 dz around circles c: (a) |z|=1 , (b) |z-1|=1

Complex Analysis | Unit 2 | Lecture 13 | Example of Cauchy's Integral Formula

TIDAK SAMPAI 1 MENIT!!! Print โ€˜Zโ€™ Pattern Menggunakan C. #short #ngodingdarinol #belajarpemrograman

@btechmathshub7050Complex Integration-Problems related to Cauchy's Integral formula

if C is a Circle of |z|=3/2 Evaluate integral 4-3z/z(z-1)(z-2) dz #complex analysis

graphing |z-1|=2 , in the complex plane (related videos in desc. below)

Cauchy's Integral problems || Integration of e^2z/(z-1)(z-2)dz where c is |z|=3

Evaluate the Line Integral of 1/(zยฒ-1) over |z| = 2

Complex Analysis | Unit 2 | Lecture 14 | Extention of Cauchy's Integral Formula

#16 || Problem#4|| Cauchyโ€™s theorem || โˆซ๐’†^๐’›/((๐’›+๐Ÿ)(๐’›โˆ’๐Ÿ)) ๐’…๐’› || c: |๐’›|=๐Ÿ‘|| 18MAT41||

#20 || Problem#1|| Cauchyโ€™s integral formula|| โˆฎ(๐’”๐’Š๐’๐…๐’›^๐Ÿ+๐’„๐’๐’”๐…๐’›^๐Ÿ)/((๐’›โˆ’๐Ÿ)(๐’›โˆ’๐Ÿ)) ๐’…๐’› || c: |๐’›|=๐Ÿ‘ ||

@btechmathshub7050Complex Integration-Problems related to Cauchy's Integral formula

If S = {z โˆˆ C : |z-i| = |z + i| = |z - 1|}, then, n(S) is:

Evaluate โˆซ๐‘€พ |๐‘ง| ๐‘‘๐‘ง , where ๐ถ is the upper half of circle |๐‘ง|=1 .

Basic Complex Analysis - Unit 3 - Lecture 18 - Evaluation of Integral using Cauchy's Residue Theorem

If a^x=b,b^y=c & c^z=a, prove that xyz=1.| indices | class10

#17 || Problem#4|| Cauchyโ€™s theorem || โˆซ๐’†^๐Ÿ๐’›/((๐’+๐Ÿ)^๐Ÿ (๐’›โˆ’๐Ÿ)) ๐’…๐’› ,c is the circle |๐’›|=๐Ÿ‘ ||18MAT41 ||

#15 || Problem#3||Cauchyโ€™s theorem ||โˆซ๐’…๐’›/(๐’›^๐Ÿโˆ’๐Ÿ’) || ๐’„:|๐’›|=๐Ÿ || ๐’„:|๐’›|=๐Ÿ‘ || ๐’„: |๐’›+๐Ÿ|=๐Ÿ || 18MAT41