filmov
tv
C=|z-1|
0:04:15
#13 || Problem#1 || Cauchyโs theorem || โซ(๐^๐โ๐+๐)/(๐โ๐) ๐ ๐ || c: |๐|=๐ || c:|๐|=๐/๐|| 18MAT41 ||
0:04:10
Evaluate the Closed Line Integral , where C is the Circle |z|= 2 & |z| = 1/2 CAUCHY INTEGRAL FORMULA
0:08:52
ะััะธะฝ ะฟะพะทะดัะฐะฒะธะป ั ะะพะฒัะผ ะณะพะดะพะผ | 2025
0:10:16
@btechmathshub7050Complex Integration -Problem based on cauchy's Integral Formula
0:04:08
If a^(x-1) = bc, b^(y-1) = ac and c^(z-1) = ab then xy + yz + zx - xyz= ?
0:10:36
@btechmathshub7050Complex Integration-Problems related to Cauchy's Integral formula
0:17:16
Evaluate the integral (z bar)^2 dz around circles c: (a) |z|=1 , (b) |z-1|=1
0:09:05
Complex Analysis | Unit 2 | Lecture 13 | Example of Cauchy's Integral Formula
0:00:57
TIDAK SAMPAI 1 MENIT!!! Print โZโ Pattern Menggunakan C. #short #ngodingdarinol #belajarpemrograman
0:06:43
@btechmathshub7050Complex Integration-Problems related to Cauchy's Integral formula
0:04:19
if C is a Circle of |z|=3/2 Evaluate integral 4-3z/z(z-1)(z-2) dz #complex analysis
0:04:43
graphing |z-1|=2 , in the complex plane (related videos in desc. below)
0:04:45
Cauchy's Integral problems || Integration of e^2z/(z-1)(z-2)dz where c is |z|=3
0:05:27
Evaluate the Line Integral of 1/(zยฒ-1) over |z| = 2
0:10:16
Complex Analysis | Unit 2 | Lecture 14 | Extention of Cauchy's Integral Formula
0:09:03
#16 || Problem#4|| Cauchyโs theorem || โซ๐^๐/((๐+๐)(๐โ๐)) ๐ ๐ || c: |๐|=๐|| 18MAT41||
0:05:39
#20 || Problem#1|| Cauchyโs integral formula|| โฎ(๐๐๐๐ ๐^๐+๐๐๐๐ ๐^๐)/((๐โ๐)(๐โ๐)) ๐ ๐ || c: |๐|=๐ ||
0:09:28
@btechmathshub7050Complex Integration-Problems related to Cauchy's Integral formula
0:02:36
If S = {z โ C : |z-i| = |z + i| = |z - 1|}, then, n(S) is:
0:05:57
Evaluate โซ๐พ |๐ง| ๐๐ง , where ๐ถ is the upper half of circle |๐ง|=1 .
0:06:14
Basic Complex Analysis - Unit 3 - Lecture 18 - Evaluation of Integral using Cauchy's Residue Theorem
0:01:47
If a^x=b,b^y=c & c^z=a, prove that xyz=1.| indices | class10
0:08:18
#17 || Problem#4|| Cauchyโs theorem || โซ๐^๐๐/((๐+๐)^๐ (๐โ๐)) ๐ ๐ ,c is the circle |๐|=๐ ||18MAT41 ||
0:09:53
#15 || Problem#3||Cauchyโs theorem ||โซ๐ ๐/(๐^๐โ๐) || ๐:|๐|=๐ || ๐:|๐|=๐ || ๐: |๐+๐|=๐ || 18MAT41
ะะฟะตััะด